Effect of Iron stress on Selected Physiological and Spectral parameter on four Rice varieties (Oryza sativa L.)

Document Type : Original Article

Authors

1 Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, India

2 Department of Hotel Management and Catering Technology, Birla Institute of Technology, Mesra, Ranchi. Jharkhand 835215, India

10.22034/ijpp.2021.682770

Abstract

Iron toxicity is an abiotic stress comes with high concentrations of Fe2+ in the soil solution which is a well-recognized problem of rice (Oryza sativa L.) cultivation in lowland. Rice varieties differ widely in their ability to tolerate excess iron. The present study was undertaken with four rice varieties viz. Dhruba, Sampriti, Dhiren and Puspa. The objective is to study the influence of high applied Fe2+ concentrations on the growth, chlorophyll content, and antioxidant enzyme activities. The spectral reflectivity and absorption of different chemical bonding through Fourier-transform infrared spectroscopy (FTIR) of four rice varieties was also analyzed. The seven days old rice seedlings were treated with Ferrous sulphate subjected to 100 ppm to 750 ppm for further 14 days iron stress was used to analyse the morphological and biochemical responses. Besides, Fourier transform infrared spectral reflection was attributed in root and shoot part. The results indicated shoot growth and chlorophyll content decreased in 750 ppm in all the selected rice varieties of interest. On the contrary the catalase activity, protein content and lipid peroxidation increased in these varieties. However, the expression of high amount of CAT activity in Sampriti variety and high amount of SOD activity in Dhruba variety leads to tolerance in iron stress in comparison to other two varieties of interest. FTIR revealed steep band stretching of various functional groups of different compounds in both the root and shoot part of all the varieties.

Keywords


 
Aebi, H.E. 1983. ‘Catalase’, in Bergmeyer, H. U. (Ed.), Methods of enzymatic analysis, Germany: Verlag Chemie Weinheim, pp. 273-286. DOI: 10.1016/b978-0-12-091302-2.50032-3
Arnon, D.I. 1949. ‘Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris’, Plant Physiology, 24(1): 1-15. DOI: 10.1104/pp.24.1.1
Barth, A. 2000. ‘The infrared absorption of amino acid side chains’, Progress in Biophysics & Molecular Biology, 74: 141-173 DOI: 10.1016/s0079-6107(00)00021-3
Baruah, K.K., S Das and K. Das. 2007. ‘Physiological disorder of rice associated with high levels of iron in growth medium’, Journal of Plant Nutrition, 30(11): 1871-1883. DOI: 10.1080/01904160701629096
Becker, M. and F. Asch. 2005. ‘Iron toxicity in rice-conditions and management concepts’, Journal of Plant Nutrition and Soil Science, 168: 558-573. DOI: 10.1002/jpln.200520504
Bradford, M.M. 1976. ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’, Analytical Biochemistry, 72: 248-254. DOI: 10.1016/0003-2697(76)90527-3
Dorlodot, S., S. Lutts and P. Bertin. 2005. ‘Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice’, Journal of Plant Nutrition, 28: 1-20 DOI: 10.1081/PLN-200042144
Fang, W.C., J.W. Wang, C.C Lin and C.H. Kao. 2001. ‘Iron induction of lipid peroxidation and effects on antioxidative enzyme activities in rice leaves’, Plant Growth Regulation. 35: 75-80. DOI: 10.1023/A:1013879019368
Gallego, S.M., M.P Benavides and M.L. Tomaro. 1996. ‘Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress’, Plant Science, 121: 151-159. DOI: 10.1016/S0168-9452(96)04528-1
Gangarani, A., K. Rangappa, G. Yadav, H. Lembisana Devi, K. Barman, B. Kandpal and S.V. Ngachan. 2018. ‘Physiological Tolerance Mechanism of selected Rice Germplasm of Northeast India to Iron Toxicity’, Indian Journal of Hill Farming, 31(1): 75-81.
Gao, P.P., G.H. Zheng, Y.H Wu and P. Liu. 2014. ‘Effect of Exogenous Potassium on Photosynthesis and Antioxidant Enzymes of Rice under Iron Toxicity’, Russian Journal of Plant Physiology, 61(1): 47-52.
Gill, S.S and N. Tuteja. 2010. ‘Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants’ Plant Physiology and Biochemistry, 48: 909-930. DOI: 10.1016/j.plaphy.2010.08.016
Green, M. S. and J. R. Etherington. 1977. ‘Oxidation of ferrous iron by rice (Oryza sativa L.) roots: A mechanism for waterlogging tolerance?’, Journal of Experimental Biology, 28: 678–690. DOI: 10.1093/jxb/28.3.678
Griffiths, P.R. 1986. ‘Chemical Infrared Fourier Transform Spectroscopy’, New York: Wiley- Interscience, pp.65-75. DOI: 10.1002/bbpc.19860901224
Halliwell, B and J.M. Gutteridge. 2015. ‘Free Radicals in biology and medicine.” Oxford, United Kingdom University Press. 5th Edition, DOI: 10.1093/acprof:oso/9780198717478.001.0001
Heath, R.L and L. Packer. 1968, ‘Photoperoxidation in isolated chloroplasts, Kinetics and stoichiometry of fatty acid peroxidation’, Archives of Biochemistry and Biophysics, 125(1): 189-198. DOI: 10.1016/0003-9861(68)90654-1
Hendry, G.A.F. and K.J. Brocklebank. 1985. “Iron-induced oxygen radical metabolism in waterlogged plants’, New Phytologist, 101: 199-213. DOI: 10.1111/j.1469-8137.1985.tb02826.x
Kar, M. and D. Mishra. 1976. ‘Catalase, Peroxidase and Polyphenol Oxidase Activities during Rice Leaf Senescence’, Plant Physiology, 57: 315-319. DOI: 10.1104/pp.57.2.315
Kobayashi, T. and N. K. Nishizawa. 2012. ‘Iron uptake, translocation, and regulation in higher plants’, Annual Review of Plant Biology, 63: 131-152. DOI: 10.1146/annurev-arplant-042811-105522
Li, X., H. Ma, P. Jia, J. Wang, L. Jia, T. Zhang, Y. Yang, H Chen and X. Wei. 2012. ‘Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L’, Ecotoxicology and Environmental Safety, 86: 47-53. DOI: 10.1016/j.ecoenv.2012.09.010
Liang, C.Y. and R.H. Marchessault. 1959. ‘Infrared spectra of crystalline polysaccharides. II. Native cellulose in the region from 640 to 1700 cm-1’, Journal of Polymer Science, 39: 269-278. DOI: 10.1002/pol.1959.1203913521
Magnani, L., M Gaydou and C.H. Jean. 2000. ‘Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion’, Analytica Chimica Acta, 411: 209-216. DOI: 10.1016/S0003-2670(00)00717-0
Majerus, V., P. Bertin, V. Swenden, A. Fortemps, S. Lobreaux and S. Lutts. 2007. ‘Organ- dependent responses of the African rice to short-term iron toxicity: ferritin regulation and antioxidative responses’, Biologia Plantarum, 51(2): 303-312. DOI: 10.1007/s10535-007-0060-6
Marklund, S. and G. Marklund. 1974. ‘Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase’, European Journal of Biochemistry, 47: 469-474. DOI: 10.1111/j.1432-1033.1974.tb03714.x
Marschner, H. 1995. ‘Mineral nutrition of higher plants’ London: Academic Press, London pp. 313-323.
McCann, M.C., M. Hammouri, R. Wilson, P. Belton and K. Roberts. 1992. ‘Fourier transform infrared microspectroscopy is a new way to look at plant cell walls’, Plant Physiology, 100: 1940-1947. DOI: 10.1104/pp.100.4.1940
Moura, J.C., C.A. Bonine, J. de Oliveira Fernandes Viana, M.C. Dornelas and P. Mazzafera. 2010. ‘Abiotic and biotic stresses and changes in the lignin content and composition in plants.” Journal of Integrative Plant Biology, 52(4): 360-376. DOI: 10.1111/j.1744-7909.2010.00892.x
Ott, R.L. and M. Longnecker. 2008. ‘An introduction to statistical methods and data analysis’ 5th ed., Duxbury Press.
Pereira, E.G., M.A. Oliva, L. Rosado-Souza, G.C. Mendes, D.S. Colares, C.H. Stopatoa and A.M. Almeida. 2013. ‘Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations.” Plant Science, 201-202: 81-92. DOI: 10.1016/j.plantsci.2012.12.003
Sahrawat, K.L. 2010. ‘Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition’ in: Plant nutrition and abiotic stress tolerance II’, Plant stress United Kingdom: Global Science Books, 4(2): 70-75.
Sinha, S., M. Gupta and P. Chandra. 1997. ‘Oxidative stress induced by iron in Hydrilla verticillata (l.f.) royle: response of antioxidants’, Ecotoxicology and Environmental Safety, 38: 286-291. DOI: 10.1006/eesa.1997.1598
Surewicz, W.K., H.H. Mantsch and D. Chapman. 1993. ‘Determination of Protein Secondary Structure by Fourier Transform Infrared Spectroscopy’ A Critical Assessment. Biochemistry, 32(2): 389-393. DOI: 10.1021/bi00053a001
Tsuboi, M. 1957. ‘Infrared spectrum and crystal structure of cellulose’, Journal of Polymer Science, 25: 159-171. DOI: 10.1002/pol.1957.1202510904
Vansuyt, G., F. Lopez, D. Inzé, J.F. Briat and P. Fourcroy. 1997. ‘Iron triggers a rapid induction of ascorbate peroxidase gene expression in Brassica napus’, FEBS Letters, 410: 1195-1200. DOI: 10.1016/s0014-5793(97)00587-5
Xing, W., D. Li and G. Liu. 2010. ‘Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure’ Plant Physiology and Biochemistry, 48: 873-878. DOI: 10.1016/j.plaphy.2010.08.006
Yang, J. and H.E. Yen. 2002. ‘Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study’, Plant Physiology. 130, pp.1032-1042 DOI: 10.1104/pp.004325
Yoshida, S., D.A. Forno, J.H. Cock and K.A. Gomez. 1976. ‘Laboratory manual for physiological studies of rice’, Los Baños: International Rice Research Institute. Philippines.
Zhai, Z., S.R. Gayomba, H.I. Jung, N.K. Vimalakumari,  M. Piñeros, E. Craft, M.A. Rutzke, J. Danku, B. Lahner, T. Punshon, , M.L. Guerinot, D.E. Salt, L.V. Kochian and O.K. Vatamaniuk. 2014. ‘OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis’, The Plant Cell. 26: 2249-2264. DOI: 10.1105/tpc.114.123737
Zhong, S.Q., J.C. Shi and J.M. Xu. 2010. ‘Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L.) grown in artificial Pb-contaminated soil’, Journal of Soils and Sediments, 10: 964-970. DOI: 10.1007/s11368-010-0213-7