Stress response in cyanobacteria

Document Type: Reviews

Authors

Department of Plant Biology and Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran

10.22034/ijpp.2019.666767

Abstract

Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decreases the growth of cyanobacteria and affects the different processes including photosynthesis, respiration, and metabolism. The basic mechanisms for salinity adaptation include the active extrusion of inorganic ions and the accumulation of compatible solutes such as sucrose, trehalose, glucosyl glycerol, and glycine betaine. Cyanobacteria have a complex antioxidative system including enzymatic and nonenzymatic antioxidants for mitigation of oxidative damage under salt stress. Cyanobacteria have some defense mechanisms for the decline of the direct and indirect destructive effects of UV. These mechanisms include avoidance, scavenging of reactive oxygen species (ROS), synthesis of UV-absorbing/screening compounds such as mycosporine-like amino acids and scytonemin, repair of UV-induced damage in DNA, and resynthesis of proteins. Metals are involved in key metabolic pathways as redox cofactors in proteins. High concentration of metals causes the generation of ROS and oxidative damage. Thus, the major role of metal homeostasis in maintaining the intracellular concentration of metal within a range compatible with cell viability becomes evident. The biosynthesis of metabolites can be triggered by a number of abiotic stresses because they affect metabolic pathways.

Keywords